Respuesta :

Answer:

[tex]PY=5\ units[/tex]

Step-by-step explanation:

we know that

Applying the Pythagoras Theorem

[tex]PY^{2}=PX^{2}+XY^{2}[/tex]

In this problem we have that

[tex]XY=RS/2=6/2=3\ units[/tex]

[tex]PX=4\ units[/tex]

substitute

[tex]PY^{2}=4^{2}+3^{2}[/tex]

[tex]PY^{2}=25[/tex]

[tex]PY=\sqrt{25}\ units[/tex]

[tex]PY=5\ units[/tex]

Answer:

PY=5.

Step-by-step explanation:

In triangle PXY it is given PX=4, XY=half of RS=6÷2=3.

Two of the sides known we can find the third side using Pythagorean Theorem:

[tex]PY^{2} =PX^{2} +XY^{2}[/tex]

Or,  [tex]PY^{2} =4^{2}+3^{2}  =16+9=25.[/tex]

Taking root of both sides PY=5.