Respuesta :

Given:

The figure of a parallelogram.

To find:

The measure of angle Z.

Solution:

We know that, the consecutive interior angles of a parallelogram are supplementary angles, it means there sum is 180 degrees.

In the given figure angle W and angle Z are supplementary angle. So,

[tex]m\angle W+m\angle Z=180^\circ[/tex]

[tex](18b-11)^\circ+(9b+2)^\circ=180^\circ[/tex]

[tex](27b-9)^\circ=180^\circ[/tex]

[tex](27b-9)=180[/tex]

Adding 9 on both sides, we get

[tex]27b=180+9[/tex]

[tex]27b=189[/tex]

[tex]b=\dfrac{189}{27}[/tex]

[tex]b=7[/tex]

Now,

[tex]m\angle Z=(9b+2)^\circ[/tex]

[tex]m\angle Z=(9(7)+2)^\circ[/tex]

[tex]m\angle Z=(63+2)^\circ[/tex]

[tex]m\angle Z=65^\circ[/tex]

Therefore, the correct option is C.