Respuesta :

Answer:

(5,-3)

Step-by-step explanation:

Given that,

The coordinates of Q = (3,1)

The midpoint of QR = (4,-1)

We need to find the coordinates of point R.

We know that, according to mid-point theorem,

[tex](x_m,y_m)=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})[/tex]

Let (x₂,y₂) be the coordinates of point R.

So,

[tex](4,-1)=(\dfrac{3+x_2}{2},\dfrac{1+y_2}{2})\\\\\dfrac{3+x_2}{2}=4\ and\ \dfrac{1+y_2}{2}=-1\\\\3+x_2=8\ and\ y_2+1=-2\\\\x_2=5\ and\ y_2=-3[/tex]

So, the coordinates of point R is (5,-3).