Respuesta :

Answer:

1) [tex]\frac{\sin x}{1-\cos x} = \csc x + \cot x[/tex]

2) [tex]\frac{\sin x}{1-\cos x} = \frac{1}{\sin x} + \frac{\cos x}{\sin x}[/tex]

3) [tex]\frac{\sin x}{1-\cos x} = \frac{1+\cos x}{\sin x}[/tex]

4) [tex]\frac{\sin x}{1-\cos x} = \frac{\sin x \cdot (1+\cos x)}{\sin^{2}x}[/tex]

5) [tex]\frac{\sin x}{1-\cos x} = \frac{\sin x\cdot (1+\cos x)}{1-\cos^{2}x}[/tex]

6) [tex]\frac{\sin x}{1-\cos x} = \frac{\sin x\cdot (1+\cos x)}{(1+\cos x)\cdot (1-\cos x)}[/tex]

7) [tex]\frac{\sin x}{1-\cos x} = \frac{\sin x}{1-\cos x}[/tex]

Step-by-step explanation:

Now we proceed to show all steps needed to demonstrate the trigonometric identity:

1) [tex]\frac{\sin x}{1-\cos x} = \csc x + \cot x[/tex] Given.

2) [tex]\frac{\sin x}{1-\cos x} = \frac{1}{\sin x} + \frac{\cos x}{\sin x}[/tex] Identities for cosecant and cotangent functions.

3) [tex]\frac{\sin x}{1-\cos x} = \frac{1+\cos x}{\sin x}[/tex]             [tex]\frac{a}{b}+\frac{c}{b} = \frac{a+c}{b}[/tex]

4) [tex]\frac{\sin x}{1-\cos x} = \frac{\sin x \cdot (1+\cos x)}{\sin^{2}x}[/tex] Existence of additive inverse/Modulative property.

5) [tex]\frac{\sin x}{1-\cos x} = \frac{\sin x\cdot (1+\cos x)}{1-\cos^{2}x}[/tex]    Fundamental trigonometric identity.

6) [tex]\frac{\sin x}{1-\cos x} = \frac{\sin x\cdot (1+\cos x)}{(1+\cos x)\cdot (1-\cos x)}[/tex]   Factorization.

7) [tex]\frac{\sin x}{1-\cos x} = \frac{\sin x}{1-\cos x}[/tex] Existence of additive inverse/Modulative property/Result.