Respuesta :
Answer:
C
Step-by-step explanation:
Given
f(x) = - x² - 8x - 12 ← factor out - 1 from each term
= - (x² + 8x + 12) ← factor the quadratic
= - (x + 2)(x + 6) → C
The correct option is C. [tex]f(x)=-(x+2)(x+6)[/tex].
Given function is [tex]f(x) = -x^2-8x-12[/tex].
Here, [tex]f(x)= -x^2-8x-12[/tex]
[tex]f(x)=-[x^{2} +8x+12][/tex]
By middle term split method, splitting the middle term of the quadratic equation, we get
[tex]f(x)=-[x^{2} +6x+2x+12]\\[/tex]
[tex]f(x)=-[x(x+6)+2(x+6)][/tex]
[tex]f(x)=-[(x+6) (x+2)][/tex]
Hence the required equivalent form of [tex]f(x)[/tex] is [tex]-[(x+6) (x+2)][/tex]. .
For more details on Zeroes of quadratic equation follow the link:
https://brainly.com/question/4318614