Chloe has enough sand to fill a sandbox with an extra area of 36 square units she wants the outer edge of the sandbox to use as little as Material possible

Respuesta :

Answer:

[tex]Length = Width = 6\ units[/tex]

Step-by-step explanation:

Given

[tex]Area=36[/tex]

Required

The least possible material

Sandboxes usually, are rectangles or squares.

Using the above assumption, the area is calculated as:

[tex]Area= Length * Width[/tex]

[tex]Area= L* W[/tex]

[tex]L * W = 36[/tex]

Make L the subject

[tex]L = \frac{36}{W}[/tex]

The material of the outer edge is calculated by the perimeter.

[tex]Perimeter = 2 * (L +W)[/tex]

[tex]P = 2 * (L + W)[/tex]

Substitute [tex]L = \frac{36}{W}[/tex]

[tex]P = 2 * (\frac{36}{W} + W)[/tex]

Open bracket

[tex]P = \frac{72}{W} + 2W[/tex]

[tex]P = 72W^{-1} +2W[/tex]

To get the minimum material needed, we differentiate P

[tex]P' = -72W^{-2} + 2[/tex]

Set: [tex]P' = 0[/tex]

[tex]-72W^{-2} + 2 = 0[/tex]

Collect like terms

[tex]72W^{-2} = 2[/tex]

Divide both sides by 72

[tex]W^{-2} = \frac{2}{72}[/tex]

[tex]W^{-2} = \frac{1}{36}[/tex]

Rewrite as:

[tex]\frac{1}{W^2} = \frac{1}{36}[/tex]

Take positive square roots of both sides

[tex]\frac{1}{W} = \frac{1}{6}[/tex]

Cross multiply

[tex]W = 6[/tex]

Recall that: [tex]L = \frac{36}{W}[/tex]

So, we have:

[tex]L =\frac{36}{6}[/tex]

[tex]L = 6[/tex]

Hence, the dimension with the littlest material as possible is:

[tex]Length = Width = 6\ units[/tex]