Respuesta :

Answer:

[tex]x = 2[/tex] ; [tex]y = 4[/tex] and [tex]z = 7[/tex]

Step-by-step explanation:

Given

Let the sides of the cuboid be: x, y and z

[tex]Surface\ Area = 100[/tex]

Required

Find x, y and z

The surface area is calculated as:

[tex]Surface\ Area = 2*(xy + xz + yz)[/tex]

Substitute [tex]Surface\ Area = 100[/tex]

[tex]100 = 2*(xy + xz + yz)[/tex]

Divide both sides by 2

[tex]50 = xy + xz + yz[/tex]

Rewrite as:

[tex]xy + xz + yz =50[/tex]

Now, we use trial by error method to determine the values of x, y and z.

Let [tex]x = 2[/tex] and [tex]y = 4[/tex]

Solve for z:

[tex]2 * 4 + 2*z + 4*z =50[/tex]

[tex]8 + 2z + 4z =50[/tex]

Collect like terms

[tex]2z + 4z =50-8[/tex]

[tex]6z =42[/tex]

Divide both sides by 6

[tex]z = \frac{42}{6}[/tex]

[tex]z = 7[/tex]

So, we have:

[tex]x = 2[/tex] ; [tex]y = 4[/tex] and [tex]z = 7[/tex]

The above values are all integers;

Hence, it is possible to determine a cuboid with the stated requirement