Respuesta :

Answer:

True

Step-by-step explanation:

given [tex]f(x)=\sqrt[4]{2x-6}[/tex]    and    [tex]g(x)=\frac{1}{2} x^{4}+3[/tex]

to find the inverse we just switch the x and y values for one of the functions,

in this case I will chose f(x)   [note f(x) is just another way of saying y]

[tex]x=\sqrt[4]{2y-6}[/tex]

solve for x;

raise both sides to the 4th power

[tex]x^{4}=2y-6[/tex]

add 6 to both sides

[tex]x^{4} +6=2y-6-6\\=x^{4}+6=2y[/tex]

divide both sides by 2 and you get

[tex]\frac{x^{4} +6}{2} =\frac{2}{2} y[/tex]

simplify and you get

[tex]y=\frac{1}{2} x^{4} +3[/tex]

which equals to g(x).

hope this helps, for practice, I would recommend you switch the x and y of g(x)