Respuesta :

Answer:  

a. Value of x: 4

b. Measure of ∠LMN: 23

c. Measure of ∠KLM: 132

Step-by-step explanation:

a)  Two lines are parallel and KN is transversal.

So, alternate interior angles are equal.

∠LNM =∠JKL

6x + 1 = 25

Subtract 1 from both sides.

6x + 1 - 1 = 25 -1

6x = 24

Divide both sides by 6

6x/6 = 24/6

x = 4°

b) ∠LMN = 3x +11

             = 3*4 + 11

              = 12 + 11

∠LMN = 23°

c)  ∠KJL = ∠LMN    {Alternate interior angles are equal, transversal JM}

∠KJL = 23°

In ΔKLJ,

∠JKL + ∠KLM + ∠LJK = 180°

25 + ∠KLM + 23 = 180

∠KLM + 48 = 180

∠KLM = 180 - 48

∠KLM = 132°

d) In ΔJKL & ΔLMN

∠J = ∠M

∠K=∠N

∠NLM = ∠KLJ     {Vertically opposite angles.

ΔKJL & ΔLMN  are similar triangles