Answer:
[tex]Length = 10ft[/tex]
[tex]Width = 15ft[/tex]
Step-by-step explanation:
Given
[tex]W= Width\\ L = Length[/tex]
[tex]Area = 150[/tex]
[tex]W=2*L- 5[/tex]
Required
Determine the dimension
Area is calculated as:
[tex]Area = L * W[/tex]
So, we have:
[tex]L * W = 150[/tex]
Substitute: [tex]W=2*L- 5[/tex]
[tex]L * (2*L-5) = 150[/tex]
[tex]L * (2L-5) = 150[/tex]
Open bracket
[tex]2L^2 - 5L = 150[/tex]
Rewrite as:
[tex]2L^2 - 5L - 150=0[/tex]
Expand
[tex]2L^2 -20L + 15L - 150 = 0[/tex]
Factorize:
[tex]2L(L -10) + 15(L - 10) = 0[/tex]
[tex](2L + 15) (L - 10) = 0[/tex]
Split
[tex]2L + 15=0[/tex] or [tex]L -10 = 0[/tex]
Solve for L
[tex]2L =-15[/tex] or [tex]L = 10[/tex]
L cannot be negative
So:
[tex]L = 10[/tex]
Substitute [tex]L = 10[/tex] in [tex]W=2*L- 5[/tex]
[tex]W = 2 * 10 - 5[/tex]
[tex]W = 20 - 5[/tex]
[tex]W = 15[/tex]
Hence:
[tex]Length = 10ft[/tex]
[tex]Width = 15ft[/tex]