Respuesta :

Answer:

[tex]\frac{1}{4}\mathrm{tan}^4x+c[/tex]

Step-by-step explanation:

Assuming you actually mean:

[tex]\int(\mathrm{tan}^3x)(\mathrm{sec}^2x)dx[/tex].

Let [tex]u=\mathrm{tan}x[/tex].

Then, [tex]\frac{du}{dx}=\frac{d}{dx}(\frac{\mathrm{sin}x}{\mathrm{cos}x})=\mathrm{sec}^2x[/tex].

Hence, [tex]dx=\frac{1}{\mathrm{sec}^2x}du[/tex].

Therefore, we get via substitution:

[tex]\int(\mathrm{tan}^3x)du\\=\int u^3du\\=\frac{u^4}{4}+c\\=\frac{1}{4}\mathrm{tan}^4x+c[/tex]