Answer:
-2, 4 and -8
Explanation:
Given the nth term of a GP expressed as;
[tex]a_n = (-1)^n(2)^n[/tex]
When n = 1
[tex]a_1 = (-1)^1(2)^1\\a_1 = -1 * 2\\a_1 = -2\\[/tex]
when n = 2
[tex]a_2 = (-1)^2(2)^2\\a_2 = 1 * 4\\a_2 = 4\\[/tex]
when n = 3
[tex]a_3 = (-1)^3(2)^3\\a_3 = -1 * 8\\a_3 = -8\\[/tex]
Hence the first three terms of the sequence are -2, 4 and -8