Respuesta :

Given:

The length of the rectangle is:

[tex]l=x^2-x+3[/tex]

The width of the rectangle is:

[tex]w=4x+1[/tex]

To find:

The area of the given rectangle in the simplest form.

Solution:

We know that, the area of a rectangle is:

[tex]A=l\times w[/tex]

Where, l is the length and w is the width of the rectangle.

Using the above formula, the area of the given rectangle is:

[tex]A=(x^2-x+3)\times (4x+1)[/tex]

[tex]A=x^2(4x)+x^2(1)-x(4x)-x(1)+3(4x)+3(1)[/tex]

[tex]A=4x^3+x^2-4x^2-x+12x+3[/tex]

[tex]A=4x^3-3x^2+11x+3[/tex]

Therefore, the area of the given rectangle is [tex](4x^3-3x^2+11x+3)[/tex] sq. units.