Evaluate each expression for the given value(s) of the variables(s).

Answer:
9. [tex] \frac{1}{10,000} = 0.0001 [/tex]
10. [tex] \frac{1}{81} [/tex]
Step-by-step explanation:
9. [tex] x^{-4} [/tex]
Evaluate when x = 10.
Substitute x = 10 into the expression
[tex] 10^{-4} [/tex]
Apply the negative exponent rule ([tex] a^{-n} = \frac{1}{a^n} [/tex])
Thus:
[tex] = \frac{1}{10^4} [/tex]
[tex] = \frac{1}{10^4} = \frac{1}{10,000} = 0.0001 [/tex]
10. [tex] 2a^{-1}b^{-3} [/tex]
Evaluate when a = 6 and b = 3
Substitute
[tex] (2*6^{-1})(3^{-3}) [/tex]
Apply the negative exponent rule
[tex] (2*\frac{1}{6})(\frac{1}{3^3}) [/tex]
[tex] (\frac{2}{6})(\frac{1}{27}) [/tex]
[tex] \frac{2*1}{6*27} [/tex]
[tex] \frac{1}{81} [/tex]
[tex]\huge{ \mathfrak{ \underline{ Answer }\: \: ✓ }}[/tex]
plugging the value of x as 10, we get
[tex]\longrightarrow\: \: x {}^{ - 4} [/tex]
[tex]\longrightarrow\: 10 {}^{ - 4} [/tex]
[tex]\longrightarrow \dfrac{1}{10 {}^{4} } [/tex]
[tex] \longrightarrow\dfrac{1}{10000} [/tex]
[tex]\longrightarrow0.0001[/tex]
plugging the value of
[tex]\longrightarrow2 {a}^{ - 1} b {}^{ - 3} [/tex]
[tex]\longrightarrow2 \times 6 {}^{ - 1} \times 3 {}^{ - 3} [/tex]
[tex]\longrightarrow \dfrac{2}{6 \times 27} [/tex]
[tex]\longrightarrow \dfrac{2}{162} [/tex]
[tex]\longrightarrow \dfrac{1}{81} [/tex]
_____________________________
[tex] \\ \\ \mathrm{ ☠ \: TeeNForeveR \:☠ }[/tex]