Respuesta :

Answer:

9.  [tex] \frac{1}{10,000} = 0.0001 [/tex]

10. [tex] \frac{1}{81} [/tex]

Step-by-step explanation:

9. [tex] x^{-4} [/tex]

Evaluate when x = 10.

Substitute x = 10 into the expression

[tex] 10^{-4} [/tex]

Apply the negative exponent rule ([tex] a^{-n} = \frac{1}{a^n} [/tex])

Thus:

[tex] = \frac{1}{10^4} [/tex]

[tex] = \frac{1}{10^4} = \frac{1}{10,000} = 0.0001 [/tex]

10. [tex] 2a^{-1}b^{-3} [/tex]

Evaluate when a = 6 and b = 3

Substitute

[tex] (2*6^{-1})(3^{-3}) [/tex]

Apply the negative exponent rule

[tex] (2*\frac{1}{6})(\frac{1}{3^3}) [/tex]

[tex] (\frac{2}{6})(\frac{1}{27}) [/tex]

[tex] \frac{2*1}{6*27} [/tex]

[tex] \frac{1}{81} [/tex]

[tex]\huge{ \mathfrak{  \underline{ Answer }\:  \:  ✓ }}[/tex]

Question : 9

plugging the value of x as 10, we get

[tex]\longrightarrow\: \: x {}^{ - 4} [/tex]

[tex]\longrightarrow\: 10 {}^{ - 4} [/tex]

[tex]\longrightarrow \dfrac{1}{10 {}^{4} } [/tex]

[tex] \longrightarrow\dfrac{1}{10000} [/tex]

[tex]\longrightarrow0.0001[/tex]

Question : 10

plugging the value of

  • a as 6
  • b as 3

[tex]\longrightarrow2 {a}^{ - 1} b {}^{ - 3} [/tex]

[tex]\longrightarrow2 \times 6 {}^{ - 1} \times 3 {}^{ - 3} [/tex]

[tex]\longrightarrow \dfrac{2}{6 \times 27} [/tex]

[tex]\longrightarrow \dfrac{2}{162} [/tex]

[tex]\longrightarrow \dfrac{1}{81} [/tex]

_____________________________

[tex] \\ \\ \mathrm{ ☠ \: TeeNForeveR \:☠ }[/tex]