A flywheel having constant angular acceleration requires 4.00 ss to rotate through 164 radrad . Its angular velocity at the end of this time is 106 rad/srad/s . Find the angular velocity at the beginning of the 4.00 ss interval; the angular acceleration of the flywheel. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Rotation of a bicycle wheel.

Respuesta :

Answer:

[tex]\omega '=-13.5rad/s[/tex]

Explanation:

From the question we are told that:

Time [tex]t=4sec[/tex]

Angular displacement [tex]\theta= 161 rad[/tex]

Final Angular velocity  [tex]\omega = 100 rad / s[/tex]

Let

Angular acceleration [tex]\alpha[/tex]  

Generally the equation for Initial Angular velocity  [tex]\omega '[/tex] is mathematically given by

[tex]-\omega '^2=2 \alpha \theta -\omega^2[/tex]

[tex]\omega '^2= \alpha 328 +11236[/tex]

Also,Initial Angular velocity  [tex]\omega '[/tex] is mathematically given by

[tex]\omega '=\omega - \alpha t[/tex]

Therefore substitution

[tex]-\omega '^2=2 \alpha \theta -\omega^2[/tex]

[tex]\omega '=\omega - \alpha t[/tex]

[tex](\omega - \alpha t)^2=2 \alpha \theta -\omega[/tex]

[tex]-16\alpha^2+848\alpha+11236= \alpha 328 -11236[/tex]

[tex]16\alpha^2-520\alpha=0[/tex]

[tex]\alpha=29.875rads/s^2[/tex]

Substitution in the 2nd equation for Initial Angular velocity  [tex]\omega '[/tex]

[tex]\omega '=106-(29.875rads/s^2*4)[/tex]

[tex]\omega '=-13.5rad/s[/tex]