Answer:
Showing n=69/i :
n*r=0.69
where r=i/100
n*(i/100)=0.69
Solving the above Equation:
n=69/i (Proved)
Showing n=72/i :
[tex]n*(0.08-\frac{1}{2}(0.08)^2)=0.69\\n* 0.0768=0.69\\n=8.98[/tex]
Above we calculated n=8.98 ≈ 9 (Proved n=72/i)
Explanation:
Given:
[tex](1+r)^n=2[/tex]
ln(2)=0.69
i=100*r means r=i/100
Solution:
Showing n=69/i :
[tex](1+r)^n=2[/tex]
Taking ln on both sides:
[tex]ln(1+r)^n=ln (2)\\n*ln(1+r)=0.69[/tex]
From given data ln(1+r) ≈ r
Above Equation will become:
n*r=0.69
where r=i/100
n*(i/100)=0.69
Solving the above Equation:
n=69/i (Proved)
Showing n=72/i :
As we know i=100*r
when r=0.08,
i=100*0.08=8
[tex]n=72/i =72/8 =9[/tex]
Now:
[tex](1+r)^n=2[/tex]
Taking ln on both sides:
[tex]ln(1+r)^n=ln (2)\\n*ln(1+r)=0.69[/tex]
From given data ln(1+r)≈[tex]r-\frac{1}{2} r^2[/tex]
Above Equation will become:
[tex]n*r-\frac{1}{2} r^2=0.69[/tex]
where r=0.08, Now:
[tex]n*(0.08-\frac{1}{2}(0.08)^2)=0.69\\n* 0.0768=0.69\\n=8.98[/tex]
Above we calculated n=8.98 ≈ 9 (Proved n=72/i)