Answer:
The 90% confidence interval of the mean
(846.154, 853.846)
Step-by-step explanation:
Step(i):-
Given that the sample size 'n' = 25
Given that the sample mean (x⁻) = 850
The standard deviation of the Population (σ) = 15
Level of significance = 0.10
Step(ii):-
The 90% confidence interval is determined by
[tex](x^{-} - Z_{0.05} \frac{S.D}{\sqrt{n} } , x^{-} + Z_{0.05} \frac{S.D}{\sqrt{n} } )[/tex]
[tex](850 - 1.282\frac{15}{\sqrt{25} } , 850+ 1.282 \frac{15}{\sqrt{25} })[/tex]
(850 - 3.846 , 850 + 3.846)
(846.154 , 853.846)
Final answer:-
The 90% confidence interval of the mean
(846.154, 853.846)