Solution :
The PV  "perpetual" obligation of the firm  = [tex]$\frac{\$ 2 \text{ million}}{0.16}$[/tex]
                                   = $ 12.5 million
Also based on duration of the perpetuity, duration of this obligation = [tex]$\frac{1.16}{0.16}$[/tex]
                                                         = 7.25 years
Let [tex]$w$[/tex] be the [tex]$\text{weight}$[/tex] on the [tex]$5$[/tex] year maturity bond, which has a duration of [tex]$4$[/tex]years. Then :
[tex]$w \times 4 +(1-w) \times 11 = 7.25$[/tex]
[tex]$w=0.5357$[/tex]
Therefore,
[tex]$0.5357 \times \$ 12.5 = \$ 6.7$[/tex] million in the [tex]$5$[/tex] year bond
[tex]$0.4643 \times \$12.5=\$5.8$[/tex] million in the [tex]$2$[/tex] year bond.
Therefore, the total invested amounts to $ [tex]$(6.7+5.8)$[/tex] million = [tex]$\$12.5$[/tex] million, which fully matches the funding needs.