Respuesta :

Answer:

None of the colors

Step-by-step explanation:

The given parameters can be represented as:

[tex]Silver = 3[/tex]

[tex]Red = 3[/tex]

[tex]Green = 3[/tex]

[tex]Orange =1[/tex]

[tex]Total = 10[/tex]

Required

Which has a probability of 12%

To do this, we calculate the probability of each color.

This is calculated as:

[tex]P(Color) = \frac{Color}{Total}[/tex]

So, we have:

[tex]P(Silver) = \frac{Silver}{Total}[/tex]

[tex]P(Silver) = \frac{3}{10}[/tex]

Express as percentage

[tex]P(Silver) = 30\%[/tex]

[tex]P(Red) =\frac{Red}{Total}[/tex]

[tex]P(Red) =\frac{3}{10}[/tex]

Express as percentage

[tex]P(Red) =30\%[/tex]

[tex]P(Green) = \frac{Green}{Total}[/tex]

[tex]P(Green) = \frac{3}{10}[/tex]

Express as percentage

[tex]P(Green) = 30\%[/tex]

[tex]P(Orange) = \frac{1}{10}[/tex]

[tex]P(Orange) = 0.1[/tex]

Express as percentage

[tex]P(Orange) = 10\%[/tex]

So, we have:

[tex]P(Silver) = 30\%[/tex]

[tex]P(Red) =30\%[/tex]

[tex]P(Green) = 30\%[/tex]

[tex]P(Orange) = 10\%[/tex]

From the above calculations, none of the colors have a probability of 12%.