Answer:
None of the colors
Step-by-step explanation:
The given parameters can be represented as:
[tex]Silver = 3[/tex]
[tex]Red = 3[/tex]
[tex]Green = 3[/tex]
[tex]Orange =1[/tex]
[tex]Total = 10[/tex]
Required
Which has a probability of 12%
To do this, we calculate the probability of each color.
This is calculated as:
[tex]P(Color) = \frac{Color}{Total}[/tex]
So, we have:
[tex]P(Silver) = \frac{Silver}{Total}[/tex]
[tex]P(Silver) = \frac{3}{10}[/tex]
Express as percentage
[tex]P(Silver) = 30\%[/tex]
[tex]P(Red) =\frac{Red}{Total}[/tex]
[tex]P(Red) =\frac{3}{10}[/tex]
Express as percentage
[tex]P(Red) =30\%[/tex]
[tex]P(Green) = \frac{Green}{Total}[/tex]
[tex]P(Green) = \frac{3}{10}[/tex]
Express as percentage
[tex]P(Green) = 30\%[/tex]
[tex]P(Orange) = \frac{1}{10}[/tex]
[tex]P(Orange) = 0.1[/tex]
Express as percentage
[tex]P(Orange) = 10\%[/tex]
So, we have:
[tex]P(Silver) = 30\%[/tex]
[tex]P(Red) =30\%[/tex]
[tex]P(Green) = 30\%[/tex]
[tex]P(Orange) = 10\%[/tex]
From the above calculations, none of the colors have a probability of 12%.