Respuesta :

Answer:

[tex]Area = 45.82m^2[/tex]

Step-by-step explanation:

Given

[tex]d = 10m[/tex] --- diameter

[tex]\theta = 210^\circ[/tex]

Required

Determine the area of the sector

The ares of the sector is calculated as:

[tex]Area = \frac{\theta}{360} * \pi r^2[/tex]

Where

[tex]r = \frac{d}{2}[/tex]

This gives:

[tex]r = \frac{10m}{2} = 5m[/tex]

So, we have:

[tex]Area = \frac{210}{360} * 3.142 * 5^2[/tex]

[tex]Area = \frac{210}{360} * 78.55[/tex]

[tex]Area = \frac{210 * 78.55}{360}[/tex]

[tex]Area = \frac{16495.5}{360}[/tex]

[tex]Area = 45.82m^2[/tex]