Use △GHJ, where A, B, and C are midpoints of the sides. When AC = 3y−5 and HJ = 4y+2, what is HB?

Use △GHJ, where A, B, and C are midpoints of the sides
HB=14
Given :
Use △GHJ, where A, B, and C are midpoints of the sides
AC = 3y−5 and HJ = 4y+2
Apply mid point theorem
mid segment = half of base
[tex]AC=\frac{1}{2}(HJ)[/tex]
Now we replace AC and HJ
[tex]AC=\frac{1}{2}(HJ)\\3y-5=\frac{1}{2} (4y+2)\\3y-5=2y+1\\Subtract \; 2y\\1y-5=1\\Add \; 5\\1y=1+5\\y=6[/tex]
B is the midpoint . HB is half of HJ
[tex]HB=\frac{1}{2} HJ\\HB=\frac{1}{2}(4y+2)\\x=6\\HB=\frac{1}{2}(4(6)+2)\\\\HB=\frac{1}{2}(28)\\\\HB=14[/tex]
So the value of HB = 14
Learn more : brainly.com/question/23120373