please help to solve the question

[tex] \: \: \: \: \: \blue{\underline{\underline{ \large{ \tt{ \red{✧A \: N \: S \: W \: E \: R}}}}}}[/tex]
[tex] \large{ \tt{✽ Step - By - Step \:Explanation}} : [/tex]
[tex] \underline{ \underline{ \large{ \tt{G \: I\: V \: E \: N}}} }: [/tex]
[tex] \underline{ \underline{ \large{ \tt{S\: O \: L \:V \:I \: N \: G}} }}....[/tex]
[tex]\begin{array}{ |c| c | } \tt{Case \: I}& \text{Case \: II} \\ \hline \hline \tt{CP = x} & \tt{ CP = 55555 - x} \\ \tt{Profit\% =10 } & \tt{Loss\% = 10\%} \\\ \tt{SP_{1} = \frac{cp(100 + P\%)}{100} }\\ & \tt{SP_{2} = \frac{cp(100 - L\%)}{100} }\\ = \tt{\frac{x(100 + 10)}{10} } & = \tt{\frac{9 \cancel{0}(55555 - x)}{1 \cancel{00}}} \\ \\ = \frac{11}{10} x & = \tt{\frac{499995 - 9x}{10}} \end{array}
[/tex]
[tex] \underline{ \large{ \tt{According \: To \:Question \: (ATQ)}} }: [/tex]
[tex] \large{ \tt{ SP_{1} = SP_{2}}}[/tex]
⤏ [tex] \large{ \tt{ \frac{11}{10} x = \frac{499995 - 9x}{10}}} [/tex]
⤏ [tex] \large{ \tt{110x = 4999950 - 90x}}[/tex]
⤏ [tex] \tt{110x + 90x = 4999950}[/tex]
⤏ [tex] \large{ \tt{200x = 4999950}}[/tex]
⤏ [tex] \large{ \tt{x = \frac{4999950}{200}}} [/tex]
⤏ [tex] \large{ \tt{x = 24999.97}}[/tex]
[tex] \large{ \tt{Replacing \: Value}} : [/tex]
⤏ [tex] \large{ \tt{ SP = 2( \frac{11}{10 } \times 24999.97) = \underline{Rs \: 54999.934}}} [/tex]
[tex] \large{ \tt{CP = Rs \: 55555}}[/tex]
Since SP < CP , he / she made a loss
[tex] \large{ \tt{Loss\% = \frac{CP- SP}{CP} \times 100\% }}[/tex]
⟶ [tex] \large \tt \: \frac{55555 - 54999.934}{55555} \times 100\%[/tex]
⟶ [tex] \large{ \tt{0.99\%}}[/tex]
⟶[tex] \boxed{ \large{ \tt{1\%}}}[/tex]
Hence , Loss percent = 1%
Hope I helped ! ♕
Have a wonderful day / night ! ツ
✏[tex] \underbrace{ \overbrace{ \mathfrak{Carry \: On \: Learning}}}[/tex] !!
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Answer:
[tex]\begin{gathered}\begin{array}{ |c| c | } \tt{Case \: I}& \text{Case \: II} \\ \hline \hline \tt{CP = x} & \tt{ CP = 55555 - x} \\ \tt{Profit\% =10 } & \tt{Loss\% = 10\%} \\\ \tt{SP_{1} = \frac{cp(100 + P\%)}{100} }\\ & \tt{SP_{2} = \frac{cp(100 - L\%)}{100} }\\ = \tt{\frac{x(100 + 10)}{10} } & = \tt{\frac{9 \cancel{0}(55555 - x)}{1 \cancel{00}}} \\ \\ = \frac{11}{10} x & = \tt{\frac{499995 - 9x}{10}} \end{array} \end{gathered} [/tex]