Respuesta :

9514 1404 393

Answer:

  x = y = (√10)/2

Step-by-step explanation:

In an isosceles right triangle, the side lengths are equal, and they are equal to (√2)/2 times the hypotenuse length.

  x = y = (√5)(√2)/2

  x = y = (√10)/2

Answer:

x = y = [tex]\frac{1}{2}[/tex] [tex]\sqrt{10}[/tex]

Step-by-step explanation:

Using the sine ratio in the right triangle and the exact value

sin45° = [tex]\frac{\sqrt{2} }{2}[/tex]

sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{x}{\sqrt{5} }[/tex] = [tex]\frac{\sqrt{2} }{2}[/tex] ( cross- multiply )

2x = [tex]\sqrt{10}[/tex] ( divide both sides by 2 )

x = [tex]\frac{1}{2}[/tex] [tex]\sqrt{10}[/tex]

Since the base angles are 45° then the triangle is isosceles with both legs congruent , thus

x = y = [tex]\frac{1}{2}[/tex] [tex]\sqrt{10}[/tex]