Translate to a quadratic equation, then solve using the quadratic formula.
A positive integer squared plus 5 times its consecutive integer is equal to 11. Find the integers.

Respuesta :

Answer:

The integer is 1

Step-by-step explanation:

Required

Translate and solve

Let the positive integer be x.

So, we have;

The square of the integer is: x^2

Plus 5 times its consecutive integer is: x^2 + 5(x + 1)

Equals 11 is: x^2 + 5(x + 1) = 11

So, we have:

[tex]x^2 + 5(x + 1) = 11[/tex]

Open bracket

[tex]x^2 + 5x + 5= 11[/tex]

Subtract 11 from both sides

[tex]x^2 + 5x -6= 0[/tex]

Expand

[tex]x^2 + 6x - x-6= 0[/tex]

Factorize:

[tex]x(x + 6) - 1(x+6)= 0[/tex]

Factor out x + 6

[tex](x - 1) (x+6)= 0[/tex]

Split

[tex]x - 1 = 0\ or\ x + 6 = 0[/tex]

Solve for x in both cases

[tex]x = 1\ or\ x = -6[/tex]

Since the number is positive, then [tex]x = 1[/tex]