contestada

(0,7): Use the equation r^2=x^2+y^2 to find the radius of this point.
Part II: Use the fact tan theta = y/x , x not equal to zeroto find the angle for this point.
Combine your answers to write the polar coordinates of this point.

Respuesta :

Answer:  [tex](7,\frac{\pi}{2})[/tex]

Step-by-step explanation:

Given

The equation of the circle is [tex]x^2+y^2=r^2[/tex]

Point [tex](0,7)[/tex] lies on the circle

Put the value

[tex]\Rightarrow 0^2+7^2=r^2\\\Rightarrow r=7\ \text{units}[/tex]

for this point, the angle is given by

[tex]\Rightarrow \tan \theta=\dfrac{y}{x}\\\\\Rightarrow \tan \theta=\dfrac{7}{0}\rightarrow \infty[/tex]

That is [tex]\theta \rightarrow 90^{\circ}[/tex]

The polar coordinate is given by [tex](r,\theta)[/tex]

[tex]\therefore\ (7,90^{\circ})\ \text{or}\ (7,\frac{\pi}{2})[/tex]