Respuesta :

Answer:

  • x = 5 ln 1.2

Step-by-step explanation:

  • [tex]5e^{0.2x}=6[/tex]
  • [tex]e^{0.2x}=6/5[/tex]
  • [tex]e^{0.2x}=1.2[/tex]
  • [tex]ln (e^{0.2x})= ln 1.2[/tex]
  • 0.2x = ln 1.2
  • x = 5 ln 1.2
Nayefx

Answer:

[tex] \displaystyle \rm {x}=5 \ln \bigg(\frac{6}{5} \bigg) \: or \: 0.91(approx)[/tex]

Step-by-step explanation:

we are given a logarithmic equation

[tex] \displaystyle {5e}^{0.2x} = 6[/tex]

we want to figure out x

remember that,

[tex] \ln( {e}^{x} ) = x[/tex]

therefore to use the above formula with our given equation

divide both sides by 5:

[tex] \displaystyle \frac{{5e}^{0.2x} }{5}= \frac{6}{5} [/tex]

[tex] \displaystyle {e}^{0.2x} = \frac{6}{5} [/tex]

take In both sides:

[tex] \displaystyle \ln({e}^{0.2x} )= \ln \bigg(\frac{6}{5} \bigg)[/tex]

by using the formula we acquire

[tex] \displaystyle 0.2x= \ln \bigg(\frac{6}{5} \bigg)[/tex]

we can rewrite left hand side as fraction

[tex] \displaystyle \frac{1}{5} x= \ln \bigg(\frac{6}{5} \bigg)[/tex]

multiply both sides by 5

[tex] \displaystyle x=5 \ln \bigg(\frac{6}{5} \bigg)[/tex]

and we are done!