Respuesta :

Answer:

Step-by-step explanation:

Quadratic equation has been given as,

[tex]y=-x^{2} +6x+4[/tex]

Converting this equation into vertex form,

[tex]y=-(x^{2}-6x)+4[/tex]

[tex]y=-[x^{2}-2(3x)+9-9]+4[/tex]

[tex]y=-[x^{2}-2(3x)+3^2]+4+3^2[/tex]

[tex]y=-(x-3)^2+4+9[/tex]

[tex]y=-(x-3)^2+13[/tex]

By comparing this equation with the vertex form of a quadratic equation,

y = (x - h)² + k

Here, (h, k) is the vertex of the parabola.

Vertex of the parabola → x = 3, y = 13

Axis of symmetry → x = 3