Respuesta :

Answer:

[tex]-\frac{17}{4}[/tex] is 27th term of the given sequence.

Step-by-step explanation:

Given sequence is [tex]2\frac{1}{4},2,1\frac{3}{4},......[/tex]

Here, first term of the sequence,

[tex]a_1=2\frac{1}{4}[/tex]

By subtracting first term from the second term of the sequence,

[tex]T_2-T_1=2-2\frac{1}{4}[/tex]

            = [tex](2-2)-\frac{1}{4}[/tex]

            = [tex]-\frac{1}{4}[/tex]

Similarly, difference in second and third term,

[tex]1\frac{3}{4}-2=(1-2)+\frac{3}{4}[/tex]

           = [tex]-1+\frac{3}{4}[/tex]

           = [tex]\frac{3-4}{4}[/tex]

           = [tex]-\frac{1}{4}[/tex]

Therefore, there is a common difference (d) of [tex](-\frac{1}{4})[/tex].

Hence, the sequence is an Arithmetic sequence.

Explicit formula of an Arithmetic sequence is given by,

[tex]T_n=a_1+(n-1)d[/tex]

Here, n = number of term

If, [tex]T_n=-\frac{17}{4}[/tex]

By substituting these values in the formula,

[tex]-\frac{17}{4}=2\frac{1}{4}+(n-1)(-\frac{1}{4})[/tex]

[tex]-\frac{17}{4}-2\frac{1}{4}=(n-1)(-\frac{1}{4})[/tex]

[tex]-\frac{17}{4}-\frac{9}{4}=-(n-1)(\frac{1}{4})[/tex]

[tex]-(\frac{17+9}{4})=(n-1)(\frac{1}{4})[/tex]

[tex]\frac{26}{4}=\frac{1}{4}(n-1)[/tex]

n - 1 = 26

n = 27

Therefore, [tex]-\frac{17}{4}[/tex] is 27th term of the given sequence.