Respuesta :

Given:

The figure of triangle GHI and a circle M inscribed in the triangle.

To find:

The perimeter of the triangle.

Solution:

We know that the lengths of the tangent on a circle from same exterior point are always equal.

[tex]JH=HK[/tex]             (Tangent from point H)

[tex]6x-11=2x+9[/tex]

[tex]6x-2x=11+9[/tex]

[tex]4x=20[/tex]

Divide both sides by 4.

[tex]x=\dfrac{20}{4}[/tex]

[tex]x=5[/tex]

Now,

[tex]JH=6x-11[/tex]

[tex]JH=6(5)-11[/tex]

[tex]JH=30-11[/tex]

[tex]JH=19[/tex]

In the same way,

[tex]GJ=GL[/tex]             (Tangent from point H)

[tex]IK=IL[/tex]             (Tangent from point H)

From the figure, it is clear that,

[tex]IL=GI-GL[/tex]

[tex]IL=40-GJ[/tex]

[tex]IL=40-23[/tex]

[tex]IL=17[/tex]

The perimeter of the triangle GHI is:

[tex]Perimeter=GH+HI+GI[/tex]

[tex]Perimeter=(GJ+HJ)+(HK+IK)+(GL+IL)[/tex]

[tex]Perimeter=(23+19)+(19+17)+(23+17)[/tex]

[tex]Perimeter=118[/tex]

Therefore, the perimeter of the triangle GHI is 118 units.