You have total coins for a total of $. . You only have quarters and dimes. Let represent the number of quarters and represent the number of dimes.

Respuesta :

Answer:

[tex]Quarters = 41[/tex]

[tex]Dimes = 18[/tex]

Step-by-step explanation:

Given

[tex]Coins = 59[/tex]

[tex]Worth = \$12.05[/tex]

[tex]d = dimes[/tex]

[tex]q = quarters[/tex]

Required

The number of each coin

The total coins can be represented as:

[tex]d + q = 59[/tex]

[tex]1\ quarter = \$0.25 \\ 1\ dime = \$0.10[/tex]

So, the worth of the coin is:

[tex]0.25q + 0.10d = 12.05[/tex]

The equations to solve are:

[tex]0.25q + 0.10d = 12.05[/tex]

[tex]d + q = 59[/tex]

Make d the subject in: [tex]d + q = 59[/tex]

[tex]d =59 - q[/tex]

Substitute [tex]d =59 - q[/tex] in [tex]0.25q + 0.10d = 12.05[/tex]

[tex]0.25q + 0.10(59 - q) = 12.05[/tex]

[tex]0.25q + 5.9 - 0.10q = 12.05[/tex]

Collect like terms

[tex]0.25q - 0.10q = 12.05 - 5.9[/tex]

[tex]0.15q = 6.15[/tex]

Solve for q

[tex]q=\frac{6.15}{0.15}[/tex]

[tex]q=41[/tex]

Substitute [tex]q=41[/tex] in [tex]d =59 - q[/tex]

[tex]d = 59 - 41[/tex]

[tex]d = 18[/tex]

So:

[tex]Quarters = 41[/tex]

[tex]Dimes = 18[/tex]