Answer:
x-intercepts exist in the 3 functions
y-intercepts exist in the 3 functions
The function  h(x) has the lowest minimum.
The function  f(x) has the greatest maximum.
Step-by-step explanation:
Given
The attached table
Solving (a): x-intercepts
A function has x intercept if its y value equals 0.
From the table, we have:
[tex]f(2)=0[/tex]
[tex]g(4) = 0[/tex]
[tex]h(2) = 0[/tex]
All functions have x intercept
Solving (b): y-intercepts
A function has y intercept if its x value equals 0.
From the table, we have:
[tex]x = 0[/tex]
This applies to all functions in the table;
Hence, all functions have y intercept
Solving (c): Lowest minimum
The minimum of each function is:
[tex]f(x) = -12[/tex]
[tex]g(x) = -4[/tex]
[tex]h(x) = -60[/tex]
The lowest minimum is: h(x) because:
[tex]h(x) <f(x) < g(x)[/tex]
i.e.
[tex]-60 < -12 < -4[/tex]
Solving (d): Greatest maximum
The maximum of each function is:
[tex]f(x) = 12[/tex]
[tex]g(x) = 2[/tex]
[tex]h(x) = 0[/tex]
The greatest maximum is: f(x) because:
[tex]f(x) > g(x) > h(x)[/tex]
i.e.
[tex]12 > 2 > 0[/tex]