nimuram
contestada

The table shows input and output values for three functions.

Use the drop-down menus to complete each statement.



x-intercepts exist in the function(s)
.

y-intercepts exist in the function(s)
.

The function
has the lowest minimum.

The function
has the greatest maximum.

The table shows input and output values for three functions Use the dropdown menus to complete each statement xintercepts exist in the functions yintercepts exi class=

Respuesta :

Answer:

x-intercepts exist in the 3 functions

y-intercepts exist in the 3 functions

The function  h(x) has the lowest minimum.

The function  f(x) has the greatest maximum.

Step-by-step explanation:

Given

The attached table

Solving (a): x-intercepts

A function has x intercept if its y value equals 0.

From the table, we have:

[tex]f(2)=0[/tex]

[tex]g(4) = 0[/tex]

[tex]h(2) = 0[/tex]

All functions have x intercept

Solving (b): y-intercepts

A function has y intercept if its x value equals 0.

From the table, we have:

[tex]x = 0[/tex]

This applies to all functions in the table;

Hence, all functions have y intercept

Solving (c): Lowest minimum

The minimum of each function is:

[tex]f(x) = -12[/tex]

[tex]g(x) = -4[/tex]

[tex]h(x) = -60[/tex]

The lowest minimum is: h(x) because:

[tex]h(x) <f(x) < g(x)[/tex]

i.e.

[tex]-60 < -12 < -4[/tex]

Solving (d): Greatest maximum

The maximum of each function is:

[tex]f(x) = 12[/tex]

[tex]g(x) = 2[/tex]

[tex]h(x) = 0[/tex]

The greatest maximum is: f(x) because:

[tex]f(x) > g(x) > h(x)[/tex]

i.e.

[tex]12 > 2 > 0[/tex]

Answer:

1. f(x) g(x) h(x)

2. f(x) g(x) h(x)

3. h(x)

4. f(x)

Step-by-step explanation:

I guessed and it was correct.