Respuesta :
Given :-
In □PQRS side PQ∥ side RS. If m∠P = 108degree
and m∠R = 53degree
To Find :-
m∠Q and m∠S.
Solution :-
According to angle sum property
P∠Q=180−∠P
∠Q=180−108
[tex]\boxed{\sf{\angle Q = 72°}}[/tex]
For angle S
∠S=180−∠R
∠S=180−53
[tex]\boxed{\sf {\angle S = 127°}}[/tex]
[tex]\maltese\bold {lucky75} \maltese[/tex]

Answer:
Step-by-step explanation:
In □PQRS side PQ∥ side RS
so m∠P and m∠S are interior angle pair which add to 180degree
given m∠P = 108degree
m∠S = 180 - 108 = 72degree
similarly m∠R and m∠Qare interior angle pair which add to 180degree
given m∠R = 53degree
m∠S = 180 - 53 = 127degree