Respuesta :
Answer:
(a) Name: Multinomial distribution
Parameters: [tex]p_1 = 5\%[/tex] Â [tex]p_2 = 85\%[/tex] Â [tex]p_3 = 10\%[/tex] Â [tex]n = 20[/tex]
(b) Range: [tex]\{(x,y,z)| x + y + z=20\}[/tex]
(c) Name: Binomial distribution
Parameters: [tex]p_1 = 5\%[/tex] Â Â Â [tex]n = 20[/tex]
[tex](d)\ E(x) = 1[/tex] Â [tex]Var(x) = 0.95[/tex]
[tex](e)\ P(X = 1, Y = 17, Z = 3) = 0[/tex]
[tex](f)\ P(X \le 1, Y = 17, Z = 3) =0.07195[/tex]
[tex](g)\ P(X \le 1) = 0.7359[/tex]
[tex](h)\ E(Y) = 17[/tex]
Step-by-step explanation:
Given
[tex]p_1 = 5\%[/tex]
[tex]p_2 = 85\%[/tex]
[tex]p_3 = 10\%[/tex]
[tex]n = 20[/tex]
[tex]X \to[/tex] High Slabs
[tex]Y \to[/tex] Medium Slabs
[tex]Z \to[/tex] Low Slabs
Solving (a): Names and values of joint pdf of X, Y and Z
Given that:
[tex]X \to[/tex] Number of voids considered as high slabs
[tex]Y \to[/tex] Number of voids considered as medium slabs
[tex]Z \to[/tex] Number of voids considered as low slabs
Since the variables are more than 2 (2 means binomial), then the name is multinomial distribution
The parameters are:
[tex]p_1 = 5\%[/tex] Â [tex]p_2 = 85\%[/tex] Â [tex]p_3 = 10\%[/tex] Â [tex]n = 20[/tex]
And the mass function is:
[tex]f_{XYZ} = P(X = x; Y = y; Z = z) = \frac{n!}{x!y!z!} * p_1^xp_2^yp_3^z[/tex]
Solving (b): The range of the joint pdf of X, Y and Z
Given that:
[tex]n = 20[/tex]
The number of voids (x, y and z) cannot be negative and they must be integers; So:
[tex]x + y + z = n[/tex]
[tex]x + y + z = 20[/tex]
Hence, the range is:
[tex]\{(x,y,z)| x + y + z=20\}[/tex]
Solving (c): Names and values of marginal pdf of X
We have the following parameters attributed to X:
[tex]p_1 = 5\%[/tex] and [tex]n = 20[/tex]
Hence, the name is: Binomial distribution
Solving (d): E(x) and Var(x)
In (c), we have:
[tex]p_1 = 5\%[/tex] and [tex]n = 20[/tex]
[tex]E(x) = p_1* n[/tex]
[tex]E(x) = 5\% * 20[/tex]
[tex]E(x) = 1[/tex]
[tex]Var(x) = E(x) * (1 - p_1)[/tex]
[tex]Var(x) = 1 * (1 - 5\%)[/tex]
[tex]Var(x) = 1 * 0.95[/tex]
[tex]Var(x) = 0.95[/tex]
[tex](e)\ P(X = 1, Y = 17, Z = 3)[/tex]
In (b), we have: [tex]x + y + z = 20[/tex]
However, the given values of x in this question implies that:
[tex]x + y + z = 1 + 17 + 3[/tex]
[tex]x + y + z = 21[/tex]
Hence:
[tex]P(X = 1, Y = 17, Z = 3) = 0[/tex]
[tex](f)\ P{X \le 1, Y = 17, Z = 3)[/tex]
This question implies that:
[tex]P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3) + P(X = 1, Y = 17, Z = 3)[/tex]
Because
[tex]0, 1 \le 1[/tex] --- for x
In (e), we have:
[tex]P(X = 1, Y = 17, Z = 3) = 0[/tex]
So:
[tex]P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3) +0[/tex]
[tex]P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3)[/tex]
In (a), we have:
[tex]f_{XYZ} = P(X = x; Y = y; Z = z) = \frac{n!}{x!y!z!} * p_1^xp_2^yp_3^z[/tex]
So:
[tex]P(X=0; Y=17; Z = 3) = \frac{20!}{0! * 17! * 3!} * (5\%)^0 * (85\%)^{17} * (10\%)^{3}[/tex]
[tex]P(X=0; Y=17; Z = 3) = \frac{20!}{1 * 17! * 3!} * 1 * (85\%)^{17} * (10\%)^{3}[/tex]
[tex]P(X=0; Y=17; Z = 3) = \frac{20!}{17! * 3!} * (85\%)^{17} * (10\%)^{3}[/tex]
Expand
[tex]P(X=0; Y=17; Z = 3) = \frac{20*19*18*17!}{17! * 3*2*1} * (85\%)^{17} * (10\%)^{3}[/tex]
[tex]P(X=0; Y=17; Z = 3) = \frac{20*19*18}{6} * (85\%)^{17} * (10\%)^{3}[/tex]
[tex]P(X=0; Y=17; Z = 3) = 20*19*3 * (85\%)^{17} * (10\%)^{3}[/tex]
Using a calculator, we have:
[tex]P(X=0; Y=17; Z = 3) = 0.07195[/tex]
So:
[tex]P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3)[/tex]
[tex]P(X \le 1, Y = 17, Z = 3) =0.07195[/tex]
[tex](g)\ P(X \le 1)[/tex]
This implies that:
[tex]P(X \le 1) = P(X = 0) + P(X = 1)[/tex]
In (c), we established that X is a binomial distribution with the following parameters:
[tex]p_1 = 5\%[/tex] Â Â Â [tex]n = 20[/tex]
Such that:
[tex]P(X=x) = ^nC_x * p_1^x * (1 - p_1)^{n - x}[/tex]
So:
[tex]P(X=0) = ^{20}C_0 * (5\%)^0 * (1 - 5\%)^{20 - 0}[/tex]
[tex]P(X=0) = ^{20}C_0 * 1 * (1 - 5\%)^{20}[/tex]
[tex]P(X=0) = 1 * 1 * (95\%)^{20}[/tex]
[tex]P(X=0) = 0.3585[/tex]
[tex]P(X=1) = ^{20}C_1 * (5\%)^1 * (1 - 5\%)^{20 - 1}[/tex]
[tex]P(X=1) = 20 * (5\%)* (1 - 5\%)^{19}[/tex]
[tex]P(X=1) = 0.3774[/tex]
So:
[tex]P(X \le 1) = P(X = 0) + P(X = 1)[/tex]
[tex]P(X \le 1) = 0.3585 + 0.3774[/tex]
[tex]P(X \le 1) = 0.7359[/tex]
[tex](h)\ E(Y)[/tex]
Y has the following parameters
[tex]p_2 = 85\%[/tex]  and   [tex]n = 20[/tex]
[tex]E(Y) = p_2 * n[/tex]
[tex]E(Y) = 85\% * 20[/tex]
[tex]E(Y) = 17[/tex]