Answer:
The correct equation will be "[tex]\frac{x^2}{(1466)^2} +\frac{y^2}{(1953)^2} =1[/tex]".
Step-by-step explanation:
In the above question, the figure is missing. Please find below the attachment of the figure.
According to the question,
Radius of a moon,
r = 1000 km
The max. distance from moon's surface to the satellite,
a = 953 km
The min. distance from moon's surface to the satellite,
b = 466 km
Now,
As per the question or the diagram,
⇒ [tex]a_1=a+r[/tex]
[tex]=953+1000[/tex]
[tex]=1953 \ km[/tex]
⇒ [tex]b_1=b+r[/tex]
[tex]=466+1000[/tex]
[tex]=1466 \ km[/tex]
hence,
The equation of ellipse will be:
⇒ [tex]\frac{x^2}{b_1^2} +\frac{y^2}{a_1^2} =1[/tex]
On substituting all the values, we get
⇒ [tex]\frac{x^2}{(1466)^2} +\frac{y^2}{(1953)^2} =1[/tex]