using the triangle theorem solve this triangle.

Answer:
b = 4[tex]\sqrt{3}[/tex] , c = 8
Step-by-step explanation:
Using the sine ratio in the right triangle and the exact value
sin30° = [tex]\frac{1}{2}[/tex] , then
sin30° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{4}{c}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )
c = 8
Using Pythagoras' identity in the right triangle
b² + 4² = 8²
b² + 16 = 64 ( subtract 16 from both sides )
b² = 48 ( take the square root of both sides )
b = [tex]\sqrt{48}[/tex] = [tex]\sqrt{16(3)}[/tex] = 4[tex]\sqrt{3}[/tex]
Answer:
OK THIS IS A BIGGY....c = 8
Step-by-step explanation:
First, find b.
using the pythagorean theorem, a² + b² = c²
to find b using an angle, do b = √(c² - a²)
then, b = a * tan(β)
(β is the angle 30°)
So, b = 6.928
Then, plug it into the pythagorean theorem
4² + 6.928² = c²
16 + 47.997184 = c²
63.997184 = c²
√63.997184 = √c
c = 7.99982399806
Rounded is 8 :)
Hope this helps! Please mark as brainliest :)