A company is making two types of covered aluminum containers. One is a cylinder with a height of 114feet and a diameter of 1 foot. The other is a rectangular prism with a length of 34foot, a width of 34foot, and a height of 1 foot. How much greater is a cylinder's capacity?

Respuesta :

Answer:

[tex]V_d=976.9ft[/tex]

Step-by-step explanation:

From the question we are told that:

Height of cylinder h_1=114 feet

Diameter d=1

Length of triangular prism [tex]l_2=34ft[/tex]

Width of triangular prism  [tex]w_2=34ft[/tex]

Height of triangular prism [tex]h_2=1 ft[/tex]

Generally the equation for Volume of the cylinder is mathematically given by

 [tex]V_c=\pir^2h[/tex]

Where

 [tex]r=d/2\\r=0.5[/tex]

Therefore

 [tex]V_c-=\pi*0.5*114[/tex]

 [tex]V_c=57\pi[/tex]

 [tex]V_c=179.1ft[/tex]

Generally the equation for Volume of a Rectangular prism is mathematically given by

 [tex]V_r=whl[/tex]

 [tex]V_r=34*34*1[/tex]

 [tex]V_r=1156feet[/tex]

Generally the equation for Volume difference  is mathematically given by

 [tex]V_d=V_r-V_c[/tex]

 [tex]V_d=1156-179.1[/tex]

 [tex]V_d=976.9ft[/tex]