Given a circle with center (h,k) and radius r that has parametric equations x = h + r cos a and y = k + r sin a, find a set of parametric equations of a circle with center (-10, 1/2) and radius sqrt(7).

Respuesta :

Answer: [tex]x=-10+\sqrt{7}\cos \theta\-,\quad y=0.5+\sqrt{7}\sin \theta[/tex]

Step-by-step explanation:

For a circle with center [tex](h,k)[/tex]  and radius [tex]r[/tex]

The parametric equation is [tex]x=h+r\cos a[/tex], [tex]y=k+r\sin a[/tex]

For center [tex](-10,\frac{1}{2})[/tex] and radius [tex]\sqrt{7}[/tex]

Parametric equation is

[tex]\Rightarrow x=-10+\sqrt{7}\cos \theta\\\Rightarrow y=0.5+\sqrt{7}\sin \theta[/tex]