Answer: [tex]x=-10+\sqrt{7}\cos \theta\-,\quad y=0.5+\sqrt{7}\sin \theta[/tex]
Step-by-step explanation:
For a circle with center [tex](h,k)[/tex] and radius [tex]r[/tex]
The parametric equation is [tex]x=h+r\cos a[/tex], [tex]y=k+r\sin a[/tex]
For center [tex](-10,\frac{1}{2})[/tex] and radius [tex]\sqrt{7}[/tex]
Parametric equation is
[tex]\Rightarrow x=-10+\sqrt{7}\cos \theta\\\Rightarrow y=0.5+\sqrt{7}\sin \theta[/tex]