Respuesta :

UpMeZ

 

Center:  ( 6 , 8 )

Radius: 5

Answer:

[tex] x^2 +y^2 = 25 [/tex]

Step-by-step explanation:

Center of the required circle = (0, 0)

Center of the given circle = (6, 8)

Radius of the given circle = 5 units

Distance between the centers of both the circles

[tex] =\sqrt{(6-0)^2 +(8-0)^2} [/tex]

[tex] =\sqrt{(6)^2 +(8)^2} [/tex]

[tex] =\sqrt{36 +64} [/tex]

[tex] =\sqrt{100} [/tex]

[tex] =10\: units [/tex]

Since, required circle is tangent to the given circle with radius 5 units.

Therefore,

Radius of required circle = 10 - 5 = 5 units

Now, Equation of required circle can be obtained as:

[tex] (x - 0)^2 +(y - 0)^2 = 5^2 [/tex]

[tex] (x)^2 +(y)^2 = 25 [/tex]

[tex] x^2 +y^2 = 25 [/tex]