Respuesta :
Answer:
[tex] x^2 +y^2 = 25 [/tex]
Step-by-step explanation:
Center of the required circle = (0, 0)
Center of the given circle = (6, 8)
Radius of the given circle = 5 units
Distance between the centers of both the circles
[tex] =\sqrt{(6-0)^2 +(8-0)^2} [/tex]
[tex] =\sqrt{(6)^2 +(8)^2} [/tex]
[tex] =\sqrt{36 +64} [/tex]
[tex] =\sqrt{100} [/tex]
[tex] =10\: units [/tex]
Since, required circle is tangent to the given circle with radius 5 units.
Therefore,
Radius of required circle = 10 - 5 = 5 units
Now, Equation of required circle can be obtained as:
[tex] (x - 0)^2 +(y - 0)^2 = 5^2 [/tex]
[tex] (x)^2 +(y)^2 = 25 [/tex]
[tex] x^2 +y^2 = 25 [/tex]