Respuesta :

Answer:

Option 3

Step-by-step explanation:

If two ratios [tex]\frac{a}{b}[/tex] and [tex]\frac{c}{d}[/tex] are proportional,

[tex]\frac{a}{b}=\frac{c}{d}[/tex]

By applying this property for the given options,

Option 1

If the given ratios [tex]\frac{24}{31}[/tex] and [tex]\frac{20}{27}[/tex] are proportional.

[tex]\frac{24}{31}=\frac{20}{27}[/tex]

Which is false.

Therefore, ratios are not proportional.

Option 2

If the given ratios [tex]\frac{8}{9}[/tex] and [tex]\frac{24}{26}[/tex] are proportional,

[tex]\frac{8}{9}= \frac{24}{36}[/tex]

[tex]\frac{8}{9}= \frac{6}{9}[/tex]

False.

Therefore, given ratios are not proportional.

Option 3

If the given ratios [tex]\frac{16}{5}[/tex] and [tex]\frac{64}{20}[/tex] are proportional,

[tex]\frac{16}{5}=\frac{64}{20}[/tex]

[tex]\frac{16}{5}=\frac{16}{5}[/tex]

True.

Therefore, the given ratios are proportional.

Option 4

If the given ratios [tex]\frac{6}{4}[/tex] and [tex]\frac{15}{10}[/tex] are proportional,

[tex]\frac{6}{4}=\frac{15}{10}[/tex]

[tex]\frac{3}{2}= \frac{3}{2}[/tex]

True.

Therefore, given ratios are proportional.

Option 3 is the answer.