Respuesta :

Given:

An exponential function goes through points (0,12) and (3,6144).

To find:

The exponential function.

Solution:

The general exponential function is:

[tex]y=ab^x[/tex]           ...(i)

The function goes through point (0,12). Substituting [tex]x=0,y=12[/tex], we get

[tex]12=ab^0[/tex]

[tex]12=a[/tex]

The function goes through point (3,6144). Substituting [tex]a=12, x=3,y=6144[/tex] in the general exponential function, we get

[tex]6144=12b^3[/tex]

[tex]\dfrac{6144}{12}=b^3[/tex]

[tex]512=b^3[/tex]

[tex]512^{\frac{1}{3}}=b[/tex]

[tex]8=b[/tex]

Putting [tex]a=12,b=8[/tex] in (i), we get

[tex]y=12(8)^x[/tex]

Therefore, the required exponential function is [tex]y=12(8)^x[/tex].