Answer:
[tex]\text{Area}=\frac{15(x+1)}{2(x-2)}[/tex]
Step-by-step explanation:
Length of the rectangle given in the picture = [tex]\frac{5x+5}{x+3}[/tex]
Width of the rectangle = [tex]\frac{3x+9}{2x-4}[/tex]
Area of the rectangle = Length × Width
= [tex]\frac{5x+5}{x+3}\times \frac{3x+9}{2x-4}[/tex]
= [tex]\frac{5(x+1)}{x+3}\times \frac{3(x+3)}{2(x-2)}[/tex]
= [tex]\frac{15(x+1)(x+3)}{2(x+3)(x-2)}[/tex]
= [tex]\frac{15(x+1)}{2(x-2)}[/tex]
Therefore, area of the given rectangle is [tex]\frac{15(x+1)}{2(x-2)}[/tex].