Respuesta :

[tex]\huge{ \mathcal{  \underline{ Answer} \:  \:  ✓ }}[/tex]

Given :

  • volume = 220 in³
  • radius = 3 in

Solution :

[tex] \large\boxed{ \mathrm{volume = \pi {r}^{2}h }}[/tex]

  • [tex]220 = \dfrac{22}{7} \times 3 \times 3 \times h[/tex]

  • [tex] \dfrac{220 \times 7}{22 \times 3 \times 3} = h[/tex]

  • [tex] \dfrac{10 \times 7}{3 \times 3} = h[/tex]

  • [tex]h = \dfrac{70}{9} [/tex]

  • [tex] \boxed{h \: = 7.78 \: \: in}[/tex]

_____________________________

[tex]\mathrm{ \#TeeNForeveR}[/tex]

Answer:

0.078 inches

Explanation:

  1. The volume of a cylinder is [tex]V=\pi r^{2} h[/tex]. [tex]r[/tex] is the radius of the cylinder, [tex]h[/tex] is the height of the cylinder, and [tex]V[/tex] is the total volume.
  2. We can divide both sides by [tex]9\pi[/tex] to isolate the height. We now have [tex]\frac{220}{9\pi }=h[/tex].
  3. We can plug in [tex]220[/tex] for the value of [tex]V[/tex], and insert 3 as [tex]r[/tex]. Now, we have [tex]220 = \pi (3^2)(h)[/tex].
  4. We can simplify the right side by finding the value of [tex]3^2[/tex], which is [tex]3*3[/tex], or [tex]9[/tex]. We now have [tex]220 = 9\pi h[/tex].
  5. Divide both sides by [tex]9\pi[/tex] so we can isolate the height! We now have [tex]\frac{220}{9\pi }=h[/tex].
  6. It would be best to use a calculator at this point. Plug the above equation into a calculator; otherwise, replace [tex]\pi[/tex] with [tex]3.14[/tex] and simplify the fraction.
  7. You should get about [tex]07.7809...[/tex] which we can round to the nearest hundredths (since this is Geometry, I am assuming you know how to round).
  8. Our final answer is [tex]07.78[/tex] inches.

Hopefully this was of use!