Respuesta :

Answer:

[tex]0.6 + \bar 0.47 = \frac{532}{495}[/tex]

Step-by-step explanation:

Given

[tex]0.6 + \bar 0.47[/tex]

Required

Express as x/y

Let

[tex]x = \bar 0.47[/tex]

This implies that:

[tex]x = 0.4747[/tex] --- (1)

Multiply by 100

[tex]100x = 47.4747[/tex] --- (2)

Subtract 1 from 2

[tex]100x - x = 99x[/tex]

This gives

[tex]47.4747 - 0.4747 = 47[/tex]

So:

[tex]99x = 47[/tex]

Solve for x

[tex]x = \frac{47}{99}[/tex]

This implies that:

[tex]\bar 0.47 = \frac{47}{99}[/tex]

[tex]0.6 + \bar 0.47[/tex] becomes

[tex]0.6 + \bar 0.47 = 0.6 + \frac{47}{99}[/tex]

Express 0.6 as fraction

[tex]0.6 + \bar 0.47 = \frac{6}{10} + \frac{47}{99}[/tex]

Take LCM and solve

[tex]0.6 + \bar 0.47 = \frac{99*6+10*47}{990}[/tex]

[tex]0.6 + \bar 0.47 = \frac{1064}{990}[/tex]

Simplify

[tex]0.6 + \bar 0.47 = \frac{532}{495}[/tex]