Respuesta :

Answer:

a. a = 3, b = 2

b. The coordinate of the center is (2, -1)

c. The eccentricity of the ellipse is √5/3

d. Please see attached graph of the ellipse created with MS Excel

Step-by-step explanation:

7. a. The given equation of the ellipse is presented as follows;

4·x² + 9·y² - 16·x + 18·y - 11

The general equation of an ellipse

[tex]\dfrac{(x - h)^2}{a^2} + \dfrac{(y - k)^2}{b^2} = 1[/tex]

We can write;

4·x² - 16·x + 9·y² + 18·y - 11

4·(x² - 4·x + 4) + 9·(y² + 2·y + 1) - 25 - 11

4·(x² - 4·x + 4) + 9·(y² + 2·y + 1) =  25 + 11 = 36

4·(x - 2)² + 9·(y + 1)² = 36

[tex]\dfrac{4\cdot (x - 2)^2}{36} + \dfrac{9 \cdot (y + 1)^2}{36} = \dfrac{36}{36}[/tex]

[tex]\therefore \dfrac{ (x - 2)^2}{9} + \dfrac{ (y + 1)^2}{4} = \dfrac{ (x - 2)^2}{3^2} + \dfrac{ (y + 1)^2}{2^2} = 1[/tex]

By comparison, a = 3, b = 2, h = 2, k = -1

b. The coordinate of the center, (h, k) = (2, -1)

c. The eccentricity of the ellipse = c/a

c² = a² - b²

∴ c² = 3² - 2² = 5

c = √5

Eccentricity = √5/3

d. Please find attached the graph of the ellipse created with MS Excel

Ver imagen oeerivona