Respuesta :

Answer:

Step-by-step explanation:

Given function in the question is,

[tex]f(x)=\frac{-2x^2-4x}{4x+8}[/tex]

       [tex]=\frac{-2x(x+2)}{4(x+2)}[/tex]

       [tex]=-\frac{1}{2}x[/tex] If [tex]x\neq -2[/tex]

Given function is not defined at x = -2

At x = -2,

[tex]f(-2)=\frac{1}{2}(2)[/tex]

          [tex]=1[/tex]

Therefore, there is a hole in the graph at (-2, 1).

Graph of the function 'f' will be a straight line with a hole at (-2, 1).

Horizontal asymptote → None

Vertical asymptote → None

x-intercept → No x-intercept [Line passes through origin (0,0)]

y-intercept → No y-intercept [Line passes through origin (0,0)]

Hole → (-2, 1)