Respuesta :

Answer:

Option D

Step-by-step explanation:

32). Given vertices of the triangle are M(2, -3), N(3, 1) and O(-3. 1).

Distance between two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given by the expression,

Distance = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Distance between M(2, -3) and N(3, 1) will be,

MN = [tex]\sqrt{(3-2)^2+(1+3)^2}[/tex]

      = [tex]\sqrt{1+16}[/tex]

      = [tex]\sqrt{17}[/tex]

Distance between M(2, -3) and O(-3, 1),

MO = [tex]\sqrt{(2+3)^2+(-3-1)^2}[/tex]

      = [tex]\sqrt{25+16}[/tex]

      = [tex]\sqrt{41}[/tex]

Distance between N(3, 1) and O(-3, 1),

NO = [tex]\sqrt{(3+3)^2+(1-1)^2}[/tex]

      = 6

Condition for right triangle,

c² = a² + b² [Here c is the longest side of the triangle]

By this property,

MO² = MN² + NO²

[tex](\sqrt{41})^2=(\sqrt{17})^2+6^2[/tex]

41 = 17 + 36

41 = 51

False.

Therefore, given triangle is not a right triangle.

Since, length of all sides are not equal, given triangle will be a scalene triangle.

Option D is the correct option.