What is the volume of the cylinder below?

Answer:
[tex]Volume=80\pi[/tex] [tex]units^{2}[/tex]
Step-by-step explanation:
Perpendicular height of the base of cylinder h = 5 units
Slant height I = 6 units
Radius of the cylinder r = 4 units
Volume of the lateral cylinder is
[tex]V = \pi r^{2} h[/tex]-----------(1)
Where r is radius of the cylinder
And h is perpendicular height of the base of cylinder.
Now, we substitute r and h value in equation 1.
[tex]V=\pi[/tex] × [tex]4^{2}[/tex] × [tex]5[/tex]
[tex]V=\pi[/tex] × [tex]16[/tex] x [tex]5[/tex]
[tex]V=\pi[/tex] × [tex]80[/tex]
[tex]V=80\pi[/tex] [tex]units^{2}[/tex]
Therefore, the volume of the given cylinder is [tex]80\pi[/tex] [tex]units^2[/tex].