Answer:
[tex]n=1.86*10^{-30}m^3[/tex]
Explanation:
From the question we are told that:
Fermi energy of conduction electrons [tex]E_f=0.548J[/tex]
Generally the equation for Fermi energy is mathematically given by
[tex]E_f=\frac{3}{\pi}^2/3*\frac{h^2}{8m}*{n^{2/3}}[/tex]
[tex]E_f=\frac{3}{\pi}^2/3*\frac{h^2}{8m}*{n^{2/3}}[/tex]
[tex]{n^{2/3}}=\frac{E_f}{\frac{3}{\pi}^2/3*\frac{h^2}{8m}}[/tex]
Where
h= Planck's constant
[tex]{n^{2/3}}=\frac{E_f}{\frac{3}{\pi}^2/3*\frac{h^2}{8m}}[/tex]
[tex]{n^{2/3}}=\frac{0.548J}{3.62*10^{-19}}[/tex]
[tex]n=(1.51*10^{-20})^{3/2}[/tex]
[tex]n=1.86*10^{-30}m^3[/tex]