Given:
In ΔOPQ, m∠Q=90°, m∠O=26°, and QO = 4.9 feet.
To find:
The measure of side PQ.
Solution:
In ΔOPQ,
[tex]m\angle O+m\angle P+m\angle Q=180^\circ[/tex] [Angle sum property]
[tex]26^\circ+m\angle P+90^\circ=180^\circ[/tex]
[tex]m\angle P+116^\circ=180^\circ[/tex]
[tex]m\angle P=180^\circ -116^\circ[/tex]
[tex]m\angle P=64^\circ[/tex]
According to Law of Sines, we get
[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]
Using the Law of Sines, we get
[tex]\dfrac{p}{\sin P}=\dfrac{o}{\sin O}[/tex]
[tex]\dfrac{QO}{\sin P}=\dfrac{PQ}{\sin O}[/tex]
Substituting the given values, we get
[tex]\dfrac{4.9}{\sin (64^\circ)}=\dfrac{PQ}{\sin (26^\circ)}[/tex]
[tex]\dfrac{4.9}{0.89879}=\dfrac{PQ}{0.43837}[/tex]
[tex]\dfrac{4.9}{0.89879}\times 0.43837=PQ[/tex]
[tex]2.38989=PQ[/tex]
Approximate the value to the nearest tenth of a foot.
[tex]PQ\approx 2.4[/tex]
Therefore, the length of PQ is 2.4 ft.