Given:
The table of values of function [tex]y=f(x)[/tex] is given.
To find:
The table of values of function [tex]y=f(\dfrac{1}{5}x)[/tex].
Solution:
The horizontal stretch is defined as:
[tex]g(x)=f(ax), 0<a<1[/tex]
Here, f(x) is horizontally stretched by factor a to get g(x).
The given function is:
[tex]y=f(\dfrac{1}{5}x)[/tex]
It means the function [tex]y=f(x)[/tex] is horizontally stretched by factor [tex]\dfrac{1}{5}[/tex] to get [tex]y=f(\dfrac{1}{5}x)[/tex].
So, we need to multiply the given x-values by 5 to get the required table of values.
Therefore, the required table of values is:
x y
-20 7
-5 -2
0 3
15 -4
30 5